Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.09.21267557

ABSTRACT

Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there is limited data comparing vaccine versus infection-induced nAb to COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals. Thirty women vaccinated with mRNA vaccines were matched with 30 naturally infected women by gestational age of exposure. Neutralization activity against the five SARS-CoV-2 Spike sequences was measured by a SARS-CoV-2 pseudotyped Spike virion assay. Effective nAbs against SARS-CoV-2 were present in maternal and cord plasma after both infection and vaccination. Compared to wild type or Alpha variant Spike, these nAbs were less effective against the Kappa, Delta, and Mu Spike variants. Vaccination during the third trimester induced higher nAb levels at delivery than infection during the third trimester. In contrast, vaccine-induced nAb levels were lower at the time of delivery compared to infection during the first trimester. The transfer ratio (cord nAb level/maternal nAb level) was greatest in mothers vaccinated in the second trimester. SARS-CoV-2 vaccination or infection in pregnancy elicit effective nAbs with differing neutralization kinetics that is impacted by gestational time of exposure. Vaccine induced neutralizing activity was reduced against the Delta, Mu, and Kappa variants.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.12.464152

ABSTRACT

Blood clots are a central feature of coronavirus disease-2019 (COVID-19) and can culminate in pulmonary embolism, stroke, and sudden death. However, it is not known how abnormal blood clots form in COVID-19 or why they occur even in asymptomatic and convalescent patients. Here we report that the Spike protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the blood coagulation factor fibrinogen and induces structurally abnormal blood clots with heightened proinflammatory activity. SARS-CoV-2 Spike virions enhanced fibrin-mediated microglia activation and induced fibrinogen-dependent lung pathology. COVID-19 patients had fibrin autoantibodies that persisted long after acute infection. Monoclonal antibody 5B8, targeting the cryptic inflammatory fibrin epitope, inhibited thromboinflammation. Our results reveal a procoagulant role for the SARS-CoV-2 Spike and propose fibrin-targeting interventions as a treatment for thromboinflammation in COVID-19.


Subject(s)
Pulmonary Embolism , Coronavirus Infections , Blood Coagulation Disorders , Severe Acute Respiratory Syndrome , Death, Sudden , COVID-19 , Stroke
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.12.443888

ABSTRACT

While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naive and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naive individuals, the second dose boosted the quantity but not quality of the T cell response, while in convalescents the second dose helped neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naive vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to the B.1.1.7 and B.1.351 variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naive counterparts.


Subject(s)
COVID-19 , Infections
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.22.21250054

ABSTRACT

Although T cells are likely players in SARS-CoV-2 immunity, little is known about the phenotypic features of SARS-CoV-2-specific T cells associated with recovery from severe COVID-19. We analyzed T cells from longitudinal specimens of 34 COVID-19 patients with severities ranging from mild (outpatient) to critical culminating in death. Relative to patients that succumbed, individuals that recovered from severe COVID-19 harbored elevated and increasing numbers of SARS-CoV-2-specific T cells capable of homeostatic proliferation. In contrast, fatal COVID-19 displayed elevated numbers of SARS-CoV-2-specific regulatory T cells and a time-dependent escalation in activated bystander CXCR4+ T cells. Together with the demonstration of increased proportions of inflammatory CXCR4+ T cells in the lungs of severe COVID-19 patients, these results support a model whereby lung-homing T cells activated through bystander effects contribute to immunopathology, while a robust, non-suppressive SARS-CoV-2-specific T cell response limits pathogenesis and promotes recovery from severe COVID-19.


Subject(s)
COVID-19 , Death
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.428543

ABSTRACT

Tremendous progress has been made to control the COVID-19 pandemic, including the development and approval of vaccines as well as the drug remdesivir, which inhibits the SARS-CoV-2 virus that causes COVID-19. However, remdesivir confers only mild benefits to a subset of patients, and additional effective therapeutic options are needed. Drug repurposing and drug combinations may represent practical strategies to address these urgent unmet medical needs. Viruses, including coronaviruses, are known to hijack the host metabolism to facilitate their own proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM). We find that SARS-CoV-2 infection can induce recurrent and complicated metabolic reprogramming spanning a wide range of metabolic pathways. We next applied the GEM-based metabolic transformation algorithm (MTA) to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. These predictions are enriched for validated targets from various published experimental drug and genetic screens. Further analyzing the RNA-sequencing data of remdesivir-treated Vero E6 cell samples that we generated, we predicted metabolic targets that act in combination with remdesivir. These predictions are enriched for previously reported synergistic drugs with remdesivir. Since our predictions are based in part on human patient data, they are likely to be clinically relevant. We provide our top high-confidence candidate targets for their evaluation in further studies, demonstrating host metabolism-targeting as a promising antiviral strategy.


Subject(s)
COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.428516

ABSTRACT

The SARS-CoV-2 Spike glycoprotein mediates virus entry and is a major target for neutralizing antibodies. All current vaccines are based on the ancestral Spike with the goal of generating protective neutralizing antibodies. Several novel SARS-CoV-2 variants with multiple Spike mutations have emerged, and their rapid spread and potential for immune escape have raised concerns. One of these variants, first identified in the United Kingdom, B.1.1.7 (also called VUI202012/01), contains eight Spike mutations with potential to impact antibody therapy, vaccine efficacy and risk of reinfection. Here we employed a lentivirus-based pseudovirus assay to show that variant B.1.1.7 remains sensitive to neutralization, albeit at moderately reduced levels (~2-fold), by serum samples from convalescent individuals and recipients of two different vaccines based on ancestral Spike (mRNA-1273, Moderna, and protein nanoparticle (NVX-CoV2373, Novavax). Some monoclonal antibodies to the receptor binding domain (RBD) of Spike were less effective against the variant while others were largely unaffected. These findings indicate that B.1.1.7 is not a neutralization escape variant that would be a major concern for current vaccines, or for risk of reinfection.


Subject(s)
Severe Acute Respiratory Syndrome
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.21.427501

ABSTRACT

Vertical transmission of SARS-CoV-2, the virus responsible for COVID-19, from parents to early embryos during conception could be catastrophic, but is contingent on the susceptibility of cells of the embryo to infection. Because presence of the SARS-CoV-2 virus has been reported in the human reproductive system, we assessed whether pre-implantation embryos are permissive to SARS-CoV-2 entry. RNA-seq and immunostaining studies revealed presence of two key entry factors in the trophectoderm of blastocyst-stage embryos, the ACE2 receptor and the TMPRSS2 protease. Exposure of blastocysts to fluorescent reporter virions pseudotyped with the SARS-CoV-2 Spike (S) glycoprotein revealed S-ACE2 dependent entry and fusion. These results indicate that human pre-implantation embryos can be infected by SARS-CoV-2, a finding pertinent to natural human conceptions and assisted reproductive technologies during and after the COVID-19 pandemic.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.21.427563

ABSTRACT

The coronavirus pandemic introduced many changes to our society, and deeply affected the established in biomedical sciences publication practices. In this article, we present a comprehensive study of the changes in scholarly publication landscape for biomedical sciences during the COVID-19 pandemic, with special emphasis on preprints posted on bioRxiv and medRxiv servers. We observe the emergence of a new category of preprint authors working in the fields of immunology, microbiology, infectious diseases, and epidemiology, who extensively used preprint platforms during the pandemic for sharing their immediate findings. The majority of these findings were works-in-progress unfitting for a prompt acceptance by refereed journals. The COVID-19 preprints that became peer-reviewed journal articles were often submitted to journals concurrently with the posting on a preprint server, and the entire publication cycle, from preprint to the online journal article, took on average 63 days. This included an expedited peer-review process of 43 days and journals production stage of 15 days, however there was a wide variation in publication delays between journals. Only one third of COVID-19 preprints posted during the first nine months of the pandemic appeared as peer-reviewed journal articles. These journal articles display high Altmetric Attention Scores further emphasizing a significance of COVID-19 research during 2020. This article will be relevant to editors, publishers, open science enthusiasts, and anyone interested in changes that the 2020 crisis transpired to publication practices and a culture of preprints in life sciences.


Subject(s)
COVID-19 , Fractures, Open , Communicable Diseases
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.08.138826

ABSTRACT

Convalescing COVID-19 patients mount robust T cell responses against SARS-CoV-2, suggesting an important role for T cells in viral clearance. To date, the phenotypes of SARS-CoV-2-specific T cells remain poorly defined. Using 38-parameter CyTOF, we phenotyped longitudinal specimens of SARS-CoV-2-specific CD4+ and CD8+ T cells from nine individuals who recovered from mild COVID-19. SARS-CoV-2-specific CD4+ T cells were exclusively Th1 cells, and predominantly Tcm with phenotypic features of robust helper function. SARS-CoV-2-specific CD8+ T cells were predominantly Temra cells in a state of less terminal differentiation than most Temra cells. Subsets of SARS-CoV-2-specific T cells express CD127, can homeostatically proliferate, and can persist for over two months. Our results suggest that long-lived and robust T cell immunity is generated following natural SARS-CoV-2 infection, and support an important role for SARS-CoV-2-specific T cells in host control of COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL